“Crypto” means “secure”,
oder?

[9] Foo-Manroot

https://foo-manroot.github.io/

https://github.com/Foo-Manroot
https://foo-manroot.github.io/

Index

Smart Contracts — Wadda hell is dis?
Lab setup and the JS hell
Some (surprisingly) common vulnerabilities

B W

Resources for masochists

Smart Contracts
Wadda hell is dis?

Smart Contracts — Wadda hell is dis?

The Ethereum blockchain has two (and a half?) types of transactions:

Contract Creation

Success

Transaction

Success

Contract Creation
Success

0x5a7815d841c206f261db27cled470fad58ac6c5451f0e09ad68e2296f26868e4a
0x70997970C51812dc3A010C7d01b50e0d17dc79C8 — 0x948B3c65b89DF0B4894ABEI1EGDO2FES79834F8F
0 Ether 0.00150552531418146 TX Fee

Oxaleeed4a78e030fclaaB865ec8242544d9bf1d7697 4bdeb40bafdf1057067f02b9 Transfer

0x70997970C51812dc3A010C7d01b50e0d17dc79C8 — 0x70997970C51812dc3A010C7d01b50e0d17dc79C8

0.000000000000000001 Ether 0.000025490060946 TX Fee

0x8d0234ba4004f7f4798ea08f0309e015ae8cbfc4babb8564e2586e4613cbe248 Buy

0 Ether 0.000084655712595072 TX Fee

0x000000-000000 — 0x709979-dc79c8

Oxeaba9da711e057b92e25a365218d6a190bad46cafc15a08664b516fdd5f382f4b

0 Ether 0.000083996846448627 TX Fee

Validated Transactions

Block #13

Block #12

Block #11

55 seconds ago

Block #10

14 minutes ago

Smart Contracts — Wadda hell is dis?

* Smart Contracts can be written in Solidity (JS-like), Vyper (Python-like), Yul (low-level), ...

* Code runs in the Ethereum Virtual Machine (EVM), which is implemented by all nodes

on the chain
* Operations are DETERMINISTIC pragma solidity >= 0.7.0

contract Coin

e The contract is stored on the chain
 Code CAN NOT be patched

address public minter
mapping (address => uint) public balances

* “Standards” change like every minute

event Sent(address from, address to, uint amount

constructor
minter = msg.sender

Lab setup and the JS hell

Lab setup and the JS hell

* Same drawbacks as the whole Node JS environment, but worse

e Constant changes of the API
* Your code from last week is already obsolete. Yay!

* EverythingisJS @

* Not many (opensource) tools to set your own testnet up:

* Chains:
* https://hardhat.org/ Allows debugging via console.log
* https://github.com/trufflesuite/ganache More tools available, but already outdated

* Block explorers:
* https://github.com/trufflesuite/ganache-ui Built for Ganache (part of the Truffle suite)
* https://github.com/blockscout/blockscout Works good enough, but has very poor docs

* https://web3js.org/ to interact with the chain from the browser

https://hardhat.org/
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache-ui
https://github.com/blockscout/blockscout
https://web3js.org/

I_a b Set u p a n d th e JS h el | root@chain ~/hardhat-testnet # npx hardhat node --hostname 0.0.0.0
You are using a version of Node.js that is not supported by Hardhat, and it may work incorrectly, or not work at all.

* Our setup:

Please, make sure you are using a supported version of Node.js.

Accounts

Testnet on Hardhat
* ContraCts ertten In SOIIdIty Account #0: Oxf39Fd6e5laad88F6F4ce6aB8827279cffFb92266 (10000 ETH)

WARNING: These accounts, and their private keys, are publicly known.

Any funds sent to them on Mainnet or any other live network WILL BE LOST.

To learn more about which versions of Node.js are supported go to https://hardhat.org/nodejs-versions

< > C O & 192.168.109.131:4000/blocks

Explorer with Blockscout - Block

#0

Page 1

Interaction with custom JS using Web3.js

Connection

Attacker address

< > C [file:///H:/Personal goals/01.- Smart contracts/vulns-explained.html

Some (surprisingly) common
vulnerabilities

Some (surprisingly) common vulnerabilities

e List based on https://github.com/crytic/not-so-smart-contracts#tvulnerabilities
* This is what we selected for the personal goal on 2022

Bad randomness Contract attempts to get on-chain randomness, which can be manipulated by users
Denial of Service Attacker stalls contract execution by failing in strategic way

Forced Ether Reception Contracts can be forced to receive Ether

Incorrect Interface Implementation uses different function signatures than interface
Integer Overflow Arithmetic in Solidity (or EVM) is not safe by default

Race Condition Transactions can be frontrun on the blockchain

Reentrancy Calling external contracts gives them control over execution
Unchecked External Call Some Solidity operations silently fail

Unprotected Function Failure to use function modifier allows attacker to manipulate contract
Variable Shadowing Local variable name is identical to one in outer scope

Wrong Constructor Name | Anyone can become owner of contract due to missing constructor

https://github.com/crytic/not-so-smart-contracts#vulnerabilities

Bad randomness

* A blockchain is deterministic by design => Can’t generate random numbers

* Some developers think they’re super clever by using functions and properties like
blockhash (),block.timestamp, etc. to gather “randomness”:

function random{uint Max) constant private returns (uint256 result){
//get the best seed for randomness
ulnt256 x = salt * 100 / Max;
salt * block.number / (salt % 5) ;
uint256 seed = block.number/3 + (salt % 300) + Last Payout +y;
uint256 h = uint256(block.blockhash(seed)});

uint256 y

return uint256((h / x)) % Max + 1; //random number between 1 and Max

h

* An attacker can simply create their own contract and pre-calculate the output of
random ()

Denial of Service / Forced Ether reception

/* Migration function */

. function migrate and destro onlyOwner
* An ERC20 token where the owner can retrieve the Bl y() only {

assert(this.balance == totalSupply);
money from bought tokens

suicide(owner);

}

* There’s no way to send extra ETH to the contract (the funds couldn’t be retrieved if
that happened...)
.. orisit?

selfdestruct (address payable recipient) : Note: selfdestruct() is a new
name for suicide()

destroy the current contract, sending its funds to the given Address

* This operation can’t revert, the funds are always transferred

Incorrect interface

e Contract functions are referenced using SHA3(<function_signature>).
« function_signature =2 function name and parameter types

pragma solidity 7@.4.15; pragma solidity ~e.4.15;

contract Alice { contract Alice {

int public val; function set(uint);

function set fixed(int);
function set(int new val){

val = new val;

h
contract Bob {

function set fixed(int new val){ e nn SofeliEe Ch

val = new val; c.set(42);

} }

function(){ function set fixed(Alice c){
val = 1; c.set fixed(42);

} }

Integer overtlow

* Integers (256-bit) before Solidity 0.8.0 overflowed

1 pragma solidity ~e.4.15;

2

3 contract Overflow {

4 uint private sellerBalance=0;

5

6 function add(uint value) returns (bool){

7 sellerBalance += value; // possible overflow
8

9 // possible auditor assert
18 // assert(sellerBalance »= value);
11 }
12
13 function safe add(uint value) returns (bool){

14 require(value + sellerBalance >= sellerBalance);
15 sellerBalance += value;

16 }

17}

* Since Solidity 0.8.0, all arithmetic operations revert on over- and underflow by default

Race condition

* Transactions are not validated immediately,
they go to the mempool
* They get committed according to the max

allowed fee:
* the higher the fee, the sooner it’'s committed

* Attackers can listen for these incoming
transactions and front-run the victim’s
transaction by setting a higher fee

J R B
o} o8]

// If the owner sees someone calls buy
// he can call changePrice to set a new price
// If his transaction is mined first, he can
// receive more tokens than excepted by the new buyer
function buy(uint new price) payable
public
{

require(msg.value >= price);

// we assume that the RaceCondition contract
// has enough allowance

token.transferFrom(msg.sender, owner, price);

price = new price;
owner = msg.sender;

¥

function changePrice(uint new price){
require(msg.sender == owner);

price = new price;

Reentrancy

* Contracts can execute code when receiving a transaction, even call other contracts

function withdrawBalance(){
// send userBalance[msg.sender] ethers to msg.sender
// 1f mgs.sender 1s a contract, it will call its fallback function

1f(! (msg.sender.call.value(userBalance[msg.sender])())){

throw; function attack (int limit) public {

}

recursion limit = limit;
userBalance[msg.sender] = @; -

M . .1l0Jg (
C e.logInt (limit);

victim contract.withdrawBalance ();

* If the sender is a contract, call ()
will trigger the attacker contract’s Funetion O
fallback function SO N P
if (recursion limit > 0) {
recursion limit -= 1;

tract.withdrawBalance () ;

Unchecked external call

* Transfers and function calls can fail
* It’s up to the caller to check the result of the operation

if (currentMonarch.etheraAddress != wizardAddress) {
currentMonarch.etherAddress. send(compensation);
} else {
// When the throne is vacant, the fee accumulates for the wizard.
3 |[contract Attacker {

IVictim victim contract;

// Usurp the current monarch, replacing them

pastMonarchs.push(currentMonarch); constructor (address victim addr) publie {
currentMonarch = Monarch(
victim contract = IVictim (victim addr) ;
msg.sender, — —
name,
valuePaid, funetion attack () publiec pavable {
block.timestamp victim contract.claimThrone.value (msg.value) (

)

function () external pavyable {
revert ()

Unprotected function

* Functions and attributes in Solidity are pulb1ic by default, but can be changed to:
private: Only the current contract can access it
internal: Accessible also to inherited contracts

external: Like public, but can only be called from outside of the current contract
contract Unprotected({
address private owner;

 Function modifiers can also be created ad-hoc

. modifier onlyowner {
(e'g' onl yOwne]f) require (msg. sender==owner) ;

r

* Contracts may be exploited if visibility is not
properly set // This function should be prc

function changeOwner (address
public

{
OWner = newOwner;

}

Variable shadowing

* Inheritance in Solidity works... funny

* Even though the methods are inherited, attributes used in the parent's method
use the parent’s instances

1 contract Suicidal {

ol

address owner;

3 function suicide() public returns (address) {
4 require(owner == msg.sender);

5 selfdestruct(owner);

6 }

7}

8 contract C is Suicidal {

9 address owner;
10 function c{) {
11 owner = msg.sender;

Wrong constructor name

* Before solidity 0.5.0, constructors had
to be named like the contract itself

* In newer compiler versions that's that
much of not an issue anymore, since
it's clearly declared like
constructor () {

Lad

~ o B

[{n I v o]

11
12
13
14
15
16
17
18
19
208
21
22
E
plil
25

contract Missing{

address private owner;

modifier onlyowner {
require(msg.sender==owner);
_3

h

// The name of the constructor should be Missing
// Anyone can call the IamMissing once the contract is deployed
function IamMissing()
public
{

owner = msg. SEﬂdEl‘;

¥

function withdraw()

public
onlyowner
{
owner.transfer(this.balance);
}

Resources for masochists

Resources for masochists

* https://ethernaut.openzeppelin.com/: A CTF to learn and practice some vulns

* https://docs.soliditylang.org : Solidity documentation

e https://ethereum.org/en/developers/docs/networks/#testnets : Info on available
toolchains to create your own testnet (if you don’t want to use my setup)

e https://remix-project.org/ : A web IDE to create and deploy Smart Contracts

e https://swcregistry.io/ : Smart Contract Weakness Classification (SWE) list

https://ethernaut.openzeppelin.com/
https://docs.soliditylang.org/
https://ethereum.org/en/developers/docs/networks/#testnets
https://remix-project.org/
https://swcregistry.io/

	Slide 1: “Crypto” means “secure”, oder?
	Slide 2: Index
	Slide 3: Smart Contracts Wadda hell is dis?
	Slide 4: Smart Contracts – Wadda hell is dis?
	Slide 5: Smart Contracts – Wadda hell is dis?
	Slide 6: Lab setup and the JS hell
	Slide 7: Lab setup and the JS hell
	Slide 8: Lab setup and the JS hell
	Slide 9: Some (surprisingly) common vulnerabilities
	Slide 10: Some (surprisingly) common vulnerabilities
	Slide 11: Bad randomness
	Slide 12: Denial of Service / Forced Ether reception
	Slide 13: Incorrect interface
	Slide 14: Integer overflow
	Slide 15: Race condition
	Slide 16: Reentrancy
	Slide 17: Unchecked external call
	Slide 18: Unprotected function
	Slide 19: Variable shadowing
	Slide 20: Wrong constructor name
	Slide 21: Resources for masochists
	Slide 22: Resources for masochists

