
“Crypto” means “secure”,
oder?

Foo-Manroot

https://foo-manroot.github.io/

https://github.com/Foo-Manroot
https://foo-manroot.github.io/

Index

1. Smart Contracts – Wadda hell is dis?

2. Lab setup and the JS hell

3. Some (surprisingly) common vulnerabilities

4. Resources for masochists

Smart Contracts
Wadda hell is dis?

Smart Contracts – Wadda hell is dis?
The Ethereum blockchain has two (and a half?) types of transactions:

Smart Contracts – Wadda hell is dis?

• Smart Contracts can be written in Solidity (JS-like), Vyper (Python-like), Yul (low-level), …

• Code runs in the Ethereum Virtual Machine (EVM), which is implemented by all nodes
on the chain
• Operations are DETERMINISTIC

• The contract is stored on the chain
• Code CAN NOT be patched

• “Standards” change like every minute

Lab setup and the JS hell

Lab setup and the JS hell

• Same drawbacks as the whole Node JS environment, but worse
• Constant changes of the API

• Your code from last week is already obsolete. Yay!

• Everything is JS

• Not many (opensource) tools to set your own testnet up:
• Chains:

• https://hardhat.org/ Allows debugging via console.log
• https://github.com/trufflesuite/ganache More tools available, but already outdated

• Block explorers:
• https://github.com/trufflesuite/ganache-ui Built for Ganache (part of the Truffle suite)
• https://github.com/blockscout/blockscout Works good enough, but has very poor docs

• https://web3js.org/ to interact with the chain from the browser

https://hardhat.org/
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache-ui
https://github.com/blockscout/blockscout
https://web3js.org/

Lab setup and the JS hell

• Our setup:
• Testnet on Hardhat

• Contracts written in Solidity

• Explorer with Blockscout

• Interaction with custom JS using Web3.js

Some (surprisingly) common
vulnerabilities

Some (surprisingly) common vulnerabilities

• List based on https://github.com/crytic/not-so-smart-contracts#vulnerabilities
• This is what we selected for the personal goal on 2022

Bad randomness Contract attempts to get on-chain randomness, which can be manipulated by users

Denial of Service Attacker stalls contract execution by failing in strategic way

Forced Ether Reception Contracts can be forced to receive Ether

Incorrect Interface Implementation uses different function signatures than interface

Integer Overflow Arithmetic in Solidity (or EVM) is not safe by default

Race Condition Transactions can be frontrun on the blockchain

Reentrancy Calling external contracts gives them control over execution

Unchecked External Call Some Solidity operations silently fail

Unprotected Function Failure to use function modifier allows attacker to manipulate contract

Variable Shadowing Local variable name is identical to one in outer scope

Wrong Constructor Name Anyone can become owner of contract due to missing constructor

https://github.com/crytic/not-so-smart-contracts#vulnerabilities

Bad randomness

• A blockchain is deterministic by design => Can’t generate random numbers

• Some developers think they’re super clever by using functions and properties like
blockhash(), block.timestamp, etc. to gather “randomness”:

• An attacker can simply create their own contract and pre-calculate the output of
random()

Denial of Service / Forced Ether reception

• An ERC20 token where the owner can retrieve the
money from bought tokens

• There’s no way to send extra ETH to the contract (the funds couldn’t be retrieved if
that happened…)

… or is it?

• This operation can’t revert, the funds are always transferred

Note: selfdestruct() is a new
name for suicide()

Incorrect interface

• Contract functions are referenced using SHA3(<function_signature>).
• function_signature → function name and parameter types

Integer overflow

• Integers (256-bit) before Solidity 0.8.0 overflowed

• Since Solidity 0.8.0, all arithmetic operations revert on over- and underflow by default

Race condition

• Transactions are not validated immediately,
they go to the mempool

• They get committed according to the max
allowed fee:

• the higher the fee, the sooner it’s committed

• Attackers can listen for these incoming
transactions and front-run the victim’s
transaction by setting a higher fee

Reentrancy
• Contracts can execute code when receiving a transaction, even call other contracts

• If the sender is a contract, call()
will trigger the attacker contract’s
fallback function

Unchecked external call
• Transfers and function calls can fail

• It’s up to the caller to check the result of the operation

Unprotected function
• Functions and attributes in Solidity are public by default, but can be changed to:

private: Only the current contract can access it
internal: Accessible also to inherited contracts
external: Like public, but can only be called from outside of the current contract

• Function modifiers can also be created ad-hoc
(e.g.: onlyOwner)

• Contracts may be exploited if visibility is not
properly set

Variable shadowing
• Inheritance in Solidity works… funny

• Even though the methods are inherited, attributes used in the parent's method
use the parent’s instances

Wrong constructor name
• Before solidity 0.5.0, constructors had

to be named like the contract itself

• In newer compiler versions that's that
much of not an issue anymore, since
it's clearly declared like
constructor () {

Resources for masochists

Resources for masochists

• https://ethernaut.openzeppelin.com/ : A CTF to learn and practice some vulns

• https://docs.soliditylang.org : Solidity documentation

• https://ethereum.org/en/developers/docs/networks/#testnets : Info on available
toolchains to create your own testnet (if you don’t want to use my setup)

• https://remix-project.org/ : A web IDE to create and deploy Smart Contracts

• https://swcregistry.io/ : Smart Contract Weakness Classification (SWE) list

https://ethernaut.openzeppelin.com/
https://docs.soliditylang.org/
https://ethereum.org/en/developers/docs/networks/#testnets
https://remix-project.org/
https://swcregistry.io/

	Slide 1: “Crypto” means “secure”, oder?
	Slide 2: Index
	Slide 3: Smart Contracts Wadda hell is dis?
	Slide 4: Smart Contracts – Wadda hell is dis?
	Slide 5: Smart Contracts – Wadda hell is dis?
	Slide 6: Lab setup and the JS hell
	Slide 7: Lab setup and the JS hell
	Slide 8: Lab setup and the JS hell
	Slide 9: Some (surprisingly) common vulnerabilities
	Slide 10: Some (surprisingly) common vulnerabilities
	Slide 11: Bad randomness
	Slide 12: Denial of Service / Forced Ether reception
	Slide 13: Incorrect interface
	Slide 14: Integer overflow
	Slide 15: Race condition
	Slide 16: Reentrancy
	Slide 17: Unchecked external call
	Slide 18: Unprotected function
	Slide 19: Variable shadowing
	Slide 20: Wrong constructor name
	Slide 21: Resources for masochists
	Slide 22: Resources for masochists

